Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viruses ; 14(12)2022 11 23.
Article in English | MEDLINE | ID: covidwho-2123871

ABSTRACT

The advent of vaccines against SARS-CoV-2 has drastically reduced the level of hospitalization with severe COVID-19 disease in infected individuals. However, the diffusion of variants of concern still challenge the protection conferred by vaccines raised against the wild-type form of the virus. Here, we have characterized the antibody response to the BNT162b2 (Comirnaty) mRNA vaccine in patients infected with the Omicron variant. We analyzed a population of 4354 vaccinated healthcare workers (HCW) from 7 different hospitals in Italy and monitored infection with SARS-CoV-2 Omicron. We correlated infection with the antibody response after vaccination. We found that a lower level of IgG, younger age, and the presence of allergies correlate with increased infection during the Omicron wave, and that infections correlate with wild-type spike protein antibody titers below 350 BAU/mL. These results support the necessity of a fourth booster dose, particularly for individuals with lower levels of antibodies.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2/genetics , Health Personnel , Antibodies, Viral , Antibodies, Neutralizing
2.
Gastro Hep Adv ; 1(2): 194-209, 2022.
Article in English | MEDLINE | ID: covidwho-1747991

ABSTRACT

BACKGROUND AND AIMS: The SARS-CoV-2 pandemic has overwhelmed the treatment capacity of the health care systems during the highest viral diffusion rate. Patients reaching the emergency department had to be either hospitalized (inpatients) or discharged (outpatients). Still, the decision was taken based on the individual assessment of the actual clinical condition, without specific biomarkers to predict future improvement or deterioration, and discharged patients often returned to the hospital for aggravation of their condition. Here, we have developed a new combined approach of omics to identify factors that could distinguish coronavirus disease 19 (COVID-19) inpatients from outpatients. METHODS: Saliva and blood samples were collected over the course of two observational cohort studies. By using machine learning approaches, we compared salivary metabolome of 50 COVID-19 patients with that of 270 healthy individuals having previously been exposed or not to SARS-CoV-2. We then correlated the salivary metabolites that allowed separating COVID-19 inpatients from outpatients with serum biomarkers and salivary microbiota taxa differentially represented in the two groups of patients. RESULTS: We identified nine salivary metabolites that allowed assessing the need of hospitalization. When combined with serum biomarkers, just two salivary metabolites (myo-inositol and 2-pyrrolidineacetic acid) and one serum protein, chitinase 3-like-1 (CHI3L1), were sufficient to separate inpatients from outpatients completely and correlated with modulated microbiota taxa. In particular, we found Corynebacterium 1 to be overrepresented in inpatients, whereas Actinomycetaceae F0332, Candidatus Saccharimonas, and Haemophilus were all underrepresented in the hospitalized population. CONCLUSION: This is a proof of concept that a combined omic analysis can be used to stratify patients independently from COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL